Generalizations of Abel's and Hurwitz's identities

نویسندگان

  • Alexander K. Kelmans
  • Alexander Postnikov
چکیده

In 1826 N. Abel found a generalization of the binomial formula. In 1902 Abel’s theorem was further generalized by A. Hurwitz. In this paper we describe constructions that provide infinitely many identities each being a generalization of a Hurwitz’s identity. Moreover, we give combinatorial interpretations of all these identities as the forest volumes of certain directed graphs. Published by Elsevier Ltd

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The asymptotic behavior of the Hurwitz binomial distribution

Hurwitz's extension of Abel's binomial theorem de nes a probability distribution on the set of integers from 0 to n. This is the distribution of the number of non-root vertices of a fringe subtree of a suitably de ned random tree with n + 2 vertices. The asymptotic behaviour of this distribution is described in a limiting regime where the distribution of the delabeled fringe subtree approaches ...

متن کامل

Proceedings of Symposia in Pure Mathematics POLYLOGARITHMIC IDENTITIES IN CUBICAL HIGHER CHOW GROUPS

For an arbitrary eld F, we study the relationship between the Bloch groups Bm(F) of 3], 20] and higher Chow groups CH m (F; 2m ? 1) Q. For m = 2 we construct a homomorphism B 2 (F) Q ! CH 2 (F; 3) Q by proving Abel's ve term relation for the dilogarithm in CH 2 (F; 3) Q among the cycles Ca of Totaro 19]. We also shed some light on the relation between B 3 (F) Q and CH 3 (F; 5) Q by proving furt...

متن کامل

Variat ions on a Theorem of Abel

III. . . . . . . . . . . . . . . . . . . . . . . . . 321 Abel's Theorem in Original Form and Applications . . . . . . 327 (a) Origins of the Theorem and Abel's Proof . . . . . . . . . 327 (b) Inversion of the Trigonometric and Elliptic Integrals . . . . 335 (c) Singular Cubics-General Addition Theorems . . . . . . . 339 (d) The Poncelet Theorem . . . . . . . . . . . . . . . . . 345 Abel's Theor...

متن کامل

Ade Functional Dilogarithm Identities and Integrable Models

We describe a new infinite family of multi-parameter functional equations for the Rogers dilogarithm, generalizing Abel's and Euler's formulas. They are suggested by the Thermodynamic Bethe Ansatz approach to the renormalization group flow of 2D integrable, ADE-related quantum field theories. The known sum rules for the central charge of critical fixed points can be obtained as special cases of...

متن کامل

One-parameter Generalizations of Rogers-Ramanujan Type Identities

Resorting to the recursions satisfied by the polynomials which converge to the right hand sides of the Rogers-Ramanujan type identities given by Sills [17] and determinant method presented in [9], we obtain many new one-parameter generalizations of the Rogers-Ramanujan type identities, such as a generalization of the analytic versions of the first and second Göllnitz-Gordon partition identities...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2008